Enzymatic upgrading of hemicelluloses for materials and nutrition

Francisco Vilaplana

Division of Glycoscience, Department of Chemistry
KTH Royal Institute of Technology, Stockholm (Sweden)

franvila@kth.se

ECOFUNCO, Pisa, 17th June 2022
Cereal Cell Walls as Source of Novel Materials and Food Ingredients

Pictures courtesy of Reskandi C. Rudjito

Wheat kernel

Endosperm

Bran

Germ

mixed-linkage β-glucan

Protein

Lignin

Xylan

Cellulose microfibril

Molecular Architecture of Cereal Cell Walls

Cellulose

Proteins

DiFA

Lignin

Pectins

β-glucans

Xyl, Ara, Glc
Extraction of Arabinoxylan from Cereal Cell Walls

- Antioxidant
- Health benefits

Ferulic Acid

- Alkali

\[
\text{Ferulic Acid} = \text{C}_{14} \text{H}_{10} \text{O}_5
\]

- Antioxidant
- Health benefits
Chemo-enzymatic Valorization of Dietary Fibres from Cereal Brans

Phenolics/lignin (12.2%)
Fats (4.6%)
Proteins (19.7%)
Starch (8.8%)
Total Carbohydrates (55.5%)
AX (39.5%)

Subcritical Water (100-160°C, pH 5-9, 100bar)

Cereal bran

Enzymatic treatment

Membrane filtration

Polysaccharides

Oligosaccharides Low M_w Biomolecules

Enzymes as versatile tools in bioprocess and material engineering

Enzymes are biological catalysts involved in both the formation or the cleavage of a chemical bond.
Enrichment of F-AX during time

Ferulic acid is preserved during SWE:
(FA content 4 – 12 mg/g in wheat bran)

AX with low A/X ratio (0.3-0.5)

Radical scavenging properties
Cereal source and processing conditions influence molecular structure of F-AX

Integrated bioprocess to release remaining AX in residue

Subcritical water extraction (SWE) and xylanolytic enzymes

- Approx. 43.5% of AX remain in the residue (R) after SWE I
- Xylanolytic enzymes (xylanases, arabinofuranosidases and FAEs) followed by SWE II

Focus: Xylanases
Family-specific activity of xylanases

Activity on 3 AX substrates with different A/X and FA content

\[\text{AcXyn10A was most active on all substrates: produces X2 and small oligosaccharides} \]
\[\text{TiXyn11 was more restricted than the GH10: produces X3 and small oligosaccharides} \]
\[\text{BXyn8 was most restricted by Araf substitution: produced long linear XOS} \]
\[\text{GpXyn5_34 required Araf substitution for hydrolysis: produced complex long (A)XOS} \]
Integrated bioprocess: maximisation and diversification of AX extraction

Up to 74.2% AX could be extracted

Molecular features

AX fractions with differing molecular structures

Important for material and nutritional applications
Chemo-Enzymatic Valorization of Dietary Fibres from Cereal Brans

F-AX polymers (films, gels)

Enzymatic tailoring (α-Arafase)

Enzymatic crosslinking (peroxidase)

Chemical crosslinking (citric acid)

F-AX oligomers (plasticizers)

FA: 8-10 mg/g
Mw: 100 kDa

FA: 30-50 mg/g
Mw: 30-50 kDa
Bio-based films from wheat bran feruloylated arabinoxylan

Better bound than free!

- Higher degree of substitution and molecular weight favour **film properties**
- Bound FA has higher **antioxidant activity** than free FA
- Chemical acetylation improves **thermal stability**

S Yilmaz-Turan et. al. Bio-based films from wheat bran feruloylated arabinoxylan: Effect of extraction technique, acetylation and feruloylation
Carbohydrate Polymers (2020) 250, 116916
Enzymatic Engineering of F-AX gels from wheat bran

Biochemical analysis (HPLC)

Molar mass distributions

S. Yilmaz-Turan, A. Jiménez-Quero, P. López-Sánchez, T. Plivelic, F. Vilaplana, Food Hydrocolloids (2022), 128, 107575
Enzymatic Engineering of F-AX gels from wheat bran

Wheat Bran FAX

Enzymatic Crosslinking

FAX-CL

Regeneration

FAX-CL-pH2

FAX-CL-pH5

FAX-CL-pH7

Cryo-SEM gel morphology

S. Yilmaz-Turan, A. Jiménez-Quero, P. López-Sánchez, T. Plivelic, F. Vilaplana, Food Hydrocolloids (2022), 128, 107575
Chemical and physical processes influence network assembly

X_c = 16%

X_c = 27%

X_c = 29%

\[I(q) = \frac{A}{q^n} + \frac{C}{1 + (q\xi)^m} + B \]

n: power-law exponent
m: Lorentz exponent
\(\xi \): correlation length

\(\xi = 113 \text{ Å} \)
Laccase and peroxidase for crosslinking of corn FAX

FA: 30-50 mg/g
Mw: 30-50 kDa

Secil Yilmaz-Turan · Francisco Vilaplana: Hydrogels with protective effects against in vitro cellular oxidative stress via enzymatic crosslinking of corn bran arabinoxylan. Manuscript in preparation
Rheological properties and morphology

Secil Yilmaz-Turan · Francisco Vilaplana: Hydrogels with protective effects against in vitro cellular oxidative stress via enzymatic crosslinking of corn bran arabinoxylan. ACS Applied Materials and Interfaces Under review
Scavenging Properties Against Reactive Oxygen Species

- Seeding human epithelial cell line (HT-29-MTX) on top of the CAX-L and CAX-H hydrogels
- Cyto-compatibility and antioxidant activity against TBHP-induced oxidative stress.
- Cells cultured on CAX-L and CAX-H produced lower ROS for all TBHP concentrations applied
- Increased cell viability compared to a reference alginate gel
Take Home Messages

- Feruloylated AX from cereal sources as a polymeric matrix for the development of functional hydrogels with antioxidant properties.

- Enzymatic oxidative coupling enables the formation of covalent bridges between the phenolic moieties.

- The molecular structure of AX (ferulic acid content, A/X ratio, molar mass) influence the morphology and rheological properties of the hydrogels.

- Chemical and physical effects control the mechanisms of hydrogel formation.

- The presence of ferulic acid renders hydrogels with protective effects against cellular oxidative stress.
Acknowledgements

Assoc.Prof. Fran Vilaplana
Dr. Amparo Jiménez
Dr. Niklas Wahlström
Dr. Pramod Sivan
Dr. Hüsam Özeren
Dr. Diego Rebaque
Reskandi Rudjito
Emiia Heinonen

Questions?

Francisco Vilaplana (franvila@kth.se)