

Enzymatic upgrading of hemicelluloses for materials and nutrition

Francisco Vilaplana

Division of Glycoscience, Department of Chemistry KTH Royal Institute of Technology, Stockholm (Sweden)

franvila@kth.se

ECOFUNCO, Pisa, 17th June 2022

Cereal Cell Walls as Source of Novel Materials and Food Ingredients

RC Rudjito, AC Ruthes, A Jiménez-Quero, F Vilaplana. ACS Sustainable Chem & Eng (2019) 7, 13167 U Holopainen-Mantila, M Raulio. Imaging Technologies and Data Processing for Food Engineers, 1 (2016).

Molecular Architecture of Cereal Cell Walls

Extraction of Arabinoxylan from Cereal Cell Walls

Chemo-enzymatic Valorization of Dietary Fibres from Cereal Brans

AC Ruthes, AM Abad, HW Tan, V Bulone, F Vilaplana. Green Chemistry (2017) 19, 1919 RC Rudjito, AC Ruthes, A Jiménez-Quero, F Vilaplana. ACS Sustainable Chem & Eng (2019) 7, 13167 RC Rudjito, ... F. Vilaplana. Green Chemistry (2020), 22, 8337-8352.

Enzymes as versatile tools in bioprocess and material engineering

AM Abad, AC Ruthes, F Vilaplana. J Applied Polymer Science (2015), DOI: 10.1002/APP.42523

Chemo-enzymatic Valorization of Dietary Fibres from Cereal Brans

Enrichment of F-AX during time

Ferulic acid is preserved during SWE: (FA content 4 – 12 mg/g in wheat bran)

AX with low A/X ratio (0.3-0.5)

Radical scavenging properties

AC Ruthes, AM Abad, HW Tan, V Bulone, F Vilaplana. Green Chemistry (2017) 19, 1919 RC Rudjito, AC Ruthes, A Jiménez-Quero, F Vilaplana. ACS Sustainable Chem & Eng (2019) 7, 13167 RC Rudjito, ... F. Vilaplana. Green Chemistry (2020), 22, 8337-8352.

Cereal source and processing conditions influence molecular structure of F-AX

RC Rudjito, AC Ruthes, A Jiménez-Quero, F Vilaplana. ACS Sustainable Chem & Eng (2019) 7, 13167 RC Rudjito et al. Green Chemistry (2020), 22, 8337-8352.

Integrated bioprocess to release remaining AX in residue

Subcritical water extraction (SWE) and xylanolytic enzymes

- Approx. 43.5 % of AX remain in the residue (R) after SWE I
- Xylanolytic enzymes (xylanases, arabinofuranosidases and FAEs) followed by SWE II

Focus: Xylanases

Family-specific activity of xylanases

WAX (A/X: 0.35) RAX (A/X: 0.77)

Rb F-AX (A/X: 0.18)

AcXyn10A was most active on all substrates: produces X2 and small oligosaccharides TIXyn11 was more restricted than the GH10: produces X3 and small oligosaccharides BXyn8 was most restricted by Araf substitution: produced long linear XOS GpXyn5_34 required Araf substitution for hydrolysis: produced complex long (A)XOS

Integrated bioprocess: maximisation and diversification of AX extraction

Molecular features

Extraction yields

AX fractions with differing molecular structures

Important for material and nutritional applications

Chemo-Enzymatic Valorization of Dietary Fibres from Cereal Brans

Bio-based films from wheat bran feruloylated arabinoxylan

- Higher degree of substitution and molecular weight favour film properties
- Bound FA has higher antioxidant activity than free FA
- Chemical acetylation improves thermal stability

S Yilmaz-Turan et. al. Bio-based films from wheat bran feruloylated arabinoxylan: Effect of extraction technique, acetylation and feruloylation Carbohydrate Polymers (2020) 250, 116916

Enzymatic Engineering of F-AX gels from wheat bran

S. Yilmaz-Turan, A. Jiménez-Quero, P. López-Sánchez, T. Plivelic, F. Vilaplana, Food Hydrocolloids (2022), 128, 107575

KTH vetenskap och konst

Enzymatic Engineering of F-AX gels from wheat bran

Cryo-SEM gel morphology

S. Yilmaz-Turan, A. Jiménez-Quero, P. López-Sánchez, T. Plivelic, F. Vilaplana, Food Hydrocolloids (2022), 128, 107575

Chemical and physical processes influence network assembly

Laccase and peroxidase for crosslinking of corn FAX

Secil Yilmaz-Turan --- Francisco Vilaplana- Hydrogels with protective effects against in vitro cellular oxidative stress via enzymatic crosslinking of corn bran arabinoxylan. Manuscript in preparation

Rheological properties and morphology

Secil Yilmaz-Turan --- Francisco Vilaplana Hydrogels with protective effects against in vitro cellular oxidative stress via enzymatic crosslinking of corn bran arabinoxylan. ACS Applied Materials and Interfaces Under review

Scavenging Properties Against Reactive Oxygen Species

- Seeding human epithelial cell line (HT-29-MTX) on top of the CAX-L and CAX-H hydrogels
- Cyto-compatibility and antioxidant activity against TBHP-induced oxidative stress.
- Cells cultured on CAX-L and CAX-H produced lower ROS for all TBHP concentrations applied
- Increased cell viability compared to a reference
 alginate gel

Take Home Messages

- Feruloylated AX from cereal sources as a polymeric matrix for the development of functional hydrogels with antioxidant properties
- Enzymatic oxidative coupling enables the formation of covalent bridges between the phenolic moieties.
- The **molecular structure** of AX (ferulic acid content, A/X ratio, molar mass) influence the morphology and rheological properties of the hydrogels.
- Chemical and physical effects control the mechanisms of hydrogel formation
- The presence of ferulic acid renders hydrogels with protective effects against **cellular oxidative stress**

Acknowledgements

Assoc.Prof. **Fran Vilaplana** **Dr. Amparo**

Jiménez

Dr. Niklas Wahlström

Dr. Pramod Sivan

Dr. Hüsam Özeren

Rebaque

Emiia Heinonen

Vetenskapsrådet

Questions?

Francisco Vilaplana (franvila@kth.se)

Rudjito

Horizon 2020 **European Union Funding** for Research & Innovation