Poly(ethylene furandicarboxylate) (PEF): A bio-based alternative to PET
Amorphous chain mobility in relation to crystallization

Maria Cristina Righetti
National Research Council (CNR)
Institute for Chemical and Physical Processes (IPCF)
Pisa, Italy
One of the most utilized thermoplastic polyesters is the fossil-based poly(ethylene terephthalate) (PET).

Furan-based polyesters, as poly(ethylene furandicarboxylate) (PEF), have proven to be excellent PET substitutes.

The glass transition temperature of PEF is higher than that of PET (85 °C vs. 75°C), which is useful for heat resistant packaging.

The melting temperature is lower than that of PET (210 °C vs. 250 °C), which facilitates extrusion and blow molding processes.

The PEF elastic modulus is higher than that of PET (amorphous: 3.5 GPa vs. 2.5 GPa).

But the most interesting property of PEF with respect to PET is its lower gas permeability. The strongly enhanced CO$_2$ barrier properties make PEF very interesting for packaging of carbonated drinks. Permeability is strongly reduced also for O$_2$ and H$_2$O.
Hydroxymethylfurfural (HMF)
Furandicarboxylic acid (FDCA)

PEF: polycondensation (FDCA + ethylene glycol)

catalysts
 • metals (Sb, Ti, Ge, Sn) to be removed
 • eco-friendly ionic liquids
 • enzymes

M.G. Davidson et al, Green Chemistry 2021 23 3154
K. Loos et al. Front. Chem. 2020, 8, 585
CHEMICAL STRUCTURE

Differences in ring size, chain linearity and polarity result in significantly different properties

<table>
<thead>
<tr>
<th></th>
<th>distance between the carboxylic acid groups (Å)</th>
<th>angle between the C-C bonds (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEF</td>
<td>4.83 Å</td>
<td>129 °</td>
</tr>
<tr>
<td>PET</td>
<td>5.73 Å</td>
<td>180 °</td>
</tr>
</tbody>
</table>

PEF: smaller ring size, non-linear chain, strong permanent dipole (two doublets of non-binding electrons)

S.K. Burgess et al, Macromolecules 2014, 47, 1383
<table>
<thead>
<tr>
<th>amorphous</th>
<th>(\rho) (g/cm(^3))</th>
<th>(V_{sp}) (cm(^3)/g)</th>
<th>(V_o) (cm(^3)/g)</th>
<th>(V_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEF</td>
<td>1.37</td>
<td>0.73</td>
<td>0.59</td>
<td>0.19</td>
</tr>
<tr>
<td>PET</td>
<td>1.33</td>
<td>0.75</td>
<td>0.65</td>
<td>0.13</td>
</tr>
</tbody>
</table>

\(V_o \) = specific volume at 0 K (occupied volume), calculated from groups contributions \[1\]

\(V_f \) = fractional free volume = \((V_{sp}-V_o)/V_{sp} \)

Non-linear chain and coiled-helix conformation in the amorphous phase
poor chain packing \[2\]

AMORPHOUS PEF Barrier properties

<table>
<thead>
<tr>
<th></th>
<th>Permeability O_2 (barrer)</th>
<th>Permeability CO_2 (barrer)</th>
<th>Permeability H_2O (barrer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEF (35 °C)</td>
<td>0.011</td>
<td>0.03</td>
<td>11</td>
</tr>
<tr>
<td>PET (35 °C)</td>
<td>0.114</td>
<td>0.49</td>
<td>38</td>
</tr>
</tbody>
</table>

1 barrer = 10^{-10} cm$^3_{STP}$·cm/(cm2·s·cmHg)

PEF exhibits a **significantly reduced permeability to O_2, CO_2 and H_2O**

The improved barrier properties of PEF compared to PET appear **unexpected** in relation to the higher fractional free volume of PEF vs PET

Another PEF property influences the barrier properties: **CHAIN RIGIDITY**

S.K. Burgess et al, Macromolecules 2014, 47, 1383
The significantly smaller gas permeability in PEF is the result of reduced diffusion coefficient due to lower chain mobility and hindered local motions (furan ring-flipping) (small angle oscillations of the rings through rotations around the external C–C bonds).

After the gas molecules has dissolved in the polymer, the rotatable benzene ring and the more mobile molecular segments of PET can allow the gas molecules to diffuse easily. Conversely, the hindered furan ring-flipping and the poor segment mobility of PEF make difficult for the gas to pass through, slowing down and inhibiting the diffusion.

S.K. Burgess et al, Macromolecules 2014, 47, 1383
The rigid amorphous fraction is located at the amorphous/crystal interface amorphous polymer segments covalently connected to the crystals, with mobility hindered by the near rigid crystalline structures.

The mobile amorphous fraction vitrifies/devitrifies at T_g.

The rigid amorphous fraction vitrifies/devitrifies at temperatures higher than T_g.

Many macroscopic properties of polymeric materials are defined not only by the crystallinity degree, but also by the RAF percentage (present up to about 20-30 wt%).

MECHANICAL PROPERTIES

At temperatures higher than the glass transition, an increase in crystallinity produces an increase in the elastic modulus. An increase in rigid amorphous fraction produces an increase in the elastic modulus \[1,2\]

\[E_{\text{MAF}} < E_{\text{RAF}} < E_{\text{C}} \]

PERMEABILITY PROPERTIES

An increase in crystallinity produces a decrease in gas permeability. No linear correlation between gas permeability and crystallinity.

\[\rho_{\text{RAF}} < \rho_{\text{MAF}} < \rho_{\text{C}} \] \[1\]

An increase in rigid amorphous fraction produces an increase in gas permeability (higher free volume of the RAF with respect to the MAF).

PEF: rigid amorphous fraction (RAF) at T_g as a function of T_c.

The RAF at T_g increases linearly with decreasing the crystallization temperature.

M.C. Righetti, M. Vannini, A. Celli, D. Cangialosi, C. Marega, Polymer 2022, 247, 124771
• \(\alpha' \)-crystals grow at \(T_c \leq 140 \, \text{°C} \)
• \(\alpha \)-crystals grow at \(T_c \geq 170 \, \text{°C} \)
• a mixture of \(\alpha' \)- and \(\alpha \)-crystals develops at \(150 \leq T_c \leq 160 \, \text{°C} \)

\(\alpha \)-crystals start to grow: 150 °C

G. Stoclet, G. Gobius du Sart, B. Yeniad, S. de Vos, J.M. Lefebvre, Polymer 2015, 72, 165-176
M.C. Righetti, M. Vannini, A. Celli, D. Cangialosi, C. Marega, Polymer 2022, 247, 124771
PEF: temperature dependence of the RAF

With increasing temperature, RAF decreases from the value at T_g to zero at approximately 150 °C

M.C. Righetti, M. Vannini, A. Celli, D. Cangialosi, C. Marega, Polymer 2022, 247, 124771
Correlation between this temperature limit and the crystallization rate. The minimum of the PEF crystallization half-time is located at temperatures slightly above 150 °C.

The more ordered α-crystals grow only at temperatures higher than 150 °C.

PEF: complete mobilization of the amorphous segments occurs around 150 °C. Total absence of constraints on the amorphous segments mobility.

DENSITY

\[\rho_{MAF} = 1.370 \pm 0.003 \text{ g/cm}^3 \]
\[\rho_{RAF,\alpha} = 1.3 \pm 0.2 \text{ g/cm}^3 \]
\[\rho_{RAF,\alpha} = 1.2 \pm 0.2 \text{ g/cm}^3 \]

The RAF density is lower than the MAF density.

Thank you for your kind attention.

M.C. Righetti, M. Vannini, A. Celli, D. Cangialosi, C. Marega, Polymer 2022, 247, 124771.