

Agro-food Wastes as a Source of Antioxidants, Lipids and Cutin by Microwave-assisted and Ultrasound-assisted extraction

Ignacio Solaberrieta, Cristina Mellinas, Carlos Pelegrín, Marina Ramos, Alfonso Jiménez, <u>María Carmen Garrigós</u>

Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under grant agreement No 837863. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio Based Industries Consortium.

FINAL EVENT

Horizon 2020 European Union Funding for Research & Innovation

Agro-food wastes and circular economy

Minimize Waste

Reduce

Environmental

Footprint

- ✓ Low cost
- ✓ High availability
- ✓ Renewable

Circular economy is based on the efficient and sustainable use of the planet's resources to prevent irreversible environmental degradation and resource depletion

European Union

88 million tons → 143 billion €

 High environmental and economic impacts

Advanced valorization alternatives should be developed to maximize the added value of waste source

Food waste

(FAO, 2020)

Per capita food losses and waste (kg/year)

Production volumes of each commodity group, per region (million tonnes)

The production of food waste by producers and consumers has increased dramatically in industrialized countries Cereals, fruit and vegetables are the main food waste produced around the world

COLUNCO FINAL EVENT

SOURCE of NATURAL BIOACTIVE COMPOUNDS

TOMATO WASTE and

by-PRODUCTS

- ✓ CUTIN
- ✓ POLYPHENOLS
- ✓ FATTY ACIDS
- ✓ TOCOPHEROLS
- ✓ CAROTENOIDS

(OTHERS)

Food waste

Conversion of food waste into valuable functional additives and building blocks will permit their whole valorization

Basic building blocks for chemicals, materials, coatings and advanced biofuels are derived from renewable biological resources

1st CONFERENCE O

SUSTAINABLE COATINGS

Extraction methods

Main challenges for valorization of food residues and by-products lies on the optimization of efficient and sustainable extraction methods and techniques: cascade approach

Conventional extraction

Solid-liquid extraction:

High temperatures and long times

• Maceration at room T for days

PROBLEMS

Long extraction times Thermal degradation High amount of organic solvents

Alternative green extraction techniques

Supercritical fluid extraction (SFE) Pressurized liquid extraction (PLE) Microwave-assisted extraction (MAE) Ultrasound-assisted extraction (UAE) Subcritical water extraction (SWE)

CO FINAL EVENT

Short extraction times Low amount of organic solvents Higher selectivity and extraction yields

FINAL EVENT

CO

2CO

Microwave assisted hydrodistillation MAHD (without solvent)

- ✓ Uniform heating
- ✓ Reduce losses of heating energy
- ✓ High efficiency
- ✓ Short extraction time
- ✓ High reproducibility

Condenser flexiWAVE 14 Adapter Fiber optic temperature sensor hfrared temperature sensor 500 mL glass flask Weflon support Magnetic stirrer

Microwave-assisted extraction (MAE)

Open system (atmospheric pressure)

COUNCO FINAL EVENT

COTUNCO FINAL EVENT

COLUNCO FINAL EVENT

colunco FINAL EVENT

.....

colunco FINAL EVENT

Optimization of cutin extraction

Freeze

drying

Cutin extraction using advances techniques

ter	Acid	Centrifuge 30 min, 5000 rpm
Solid carded		Supernatant discarded

ConditionsSolventSolid/liquid
RatiopH105 minutes, 95 °CNaOH 3%1/504.5

MAE

COTUNCO FINAL EVENT

Comparison between different agro-waste sources

Source	Technique	Extraction yield (%)	
Tomato peels		13 ± 2ª	
Apple peels	UAE	19 ± 1 ^b	
Watermelon peels		6 ± 1°	
Tomato peels		17 ± 1 ^b	
Apple peels	MAE	16 ± 2 ^{ab}	
Watermelon peels		9 ± 1 ^d	

MAE

Sample	T _{max} 1 (°C)	T _{max} 2 (°C)	T _{max} 3 (°C)
Tomato	207 ± 6^{ab}	379 ± 2ª	479 ± 1^{a}
Watermelon	202 ± 1^{a}	284 ± 1^{b}	464 ± 1^{b}
Apple	215 ± 2^{b}	288 ± 1^{c}	473 ± 2 ^c

Sample	T _{max} 1 (°C)	T _{max} 2 (°C)	T _{max} 3 (°C)
Tomato	201 ± 2^a	$310~\pm~1^{a}$	$470~\pm~1^{a}$
Watermelon	199 ± 2^{a}	306 ± 2^{a}	$447~\pm~1^{ m b}$
Apple	$174~\pm~5^{\circ}$	288 ± 2^{b}	473 ± 1^{a}

UAE

✓ Higher thermal stability for MAE and UAE extracts

Raw Material After MAE Image: Constraint of the second s

✓ Fatty acid composition

cutin monomers (percentage of total peak areas in GC/MS chromatogram)

✓ Great effect in structure properties

Compound	UAE	MAE			
Hexadecanoic acid	13 ± 2 ª	16 ± 2 ª			
9,12-Octadecadienoic acid (Z,Z)	9 ± 2 ª	16 ± 2 ^b			
Oleic acid	5 ± 1 ª	8 ± 1 ^b			
Octadecanoic acid	3 ± 1 ª	4 ± 1 ª			
10,16-dihydroxyhexadecanoic acid	59±7ª	28 ± 6 ^b			

colunco FINAL EVENT

Compound	UAE	MAE 🍕
Hexadecanoic acid	$8.4\pm0.2^{\text{a}}$	8.5 ± 0.6^{a}
9,12-Octadecadienoic acid (Z,Z)	20.0 ± 1.0^{a}	$20.0\pm3.0^{\text{a}}$
Trans-9-octadecenoic acid	12.2 ± 0.5^{a}	$8.9\pm0.3^{\text{b}}$
Octadecanoic acid	$4.5\pm0.3^{\text{a}}$	$4.8\pm0.3^{\text{a}}$
10,16-dihydroxyhexadecanoic acid	$6.6\pm0.3^{\text{a}}$	2.0 ± 0.1^{b}
Alphalinolenic acid	-	23.7 ± 0.5
9,10,18-trihydroxyoctadecanoic acid	10.5 ± 0.6 ^a	0.9 ± 0.1^{b}

MAE			
8.5 ± 0.6 ^a			
20.0 ± 3.0 ^a	Compound	UAE	MAE
$8.9\pm0.3^{\text{b}}$	Hexadecanoic acid	43.0 ± 1.0^{a}	$21.7\pm0.1^{\text{b}}$
$4.8\pm0.3^{\text{a}}$	9,12-Octadecadienoic acid (Z,Z)	11.1 ± 0.4^{a}	$17.0\pm0.1^{\text{b}}$
$2.0\pm0.1^{\text{b}}$	Alphalinolenic acid	16.0 ± 0.5^{a}	$18.5\pm0.1^{\text{b}}$
23.7 ± 0.5	Octadecanoic acid	12.0 ± 1.0^{a}	9.0 ± 0.1^{b}
$0.9\pm0.1^{\text{b}}$	9,10-Dihydroxyoctadecanedioic acid	2.5 ± 0.6	-

Other compounds obtained from the cascade approach by UAE

Sample	Yield (%)	Protein content (mg eq BSA/g extract)	
Tomato	9 ± 1 ^a	590 ± 3ª	Soluble
Watermelon	7 ± 2 ^{ab}	857 ± 1 ^b	proteins
Apple	5 ± 1 ^b	625 ± 2°	

Sample	Extraction yield (%)	TPC (mgGAE/100g dm)	ABTS (µmolTE/100g dm)	FRAP (µmolTE/100g dm)	DPPH (µmolTE/100 g dm)	
Tomato	36 ± 5ª	103.5 ± 0.9ª	279 ± 3 ^a	264 ± 2 ^a	159 ± 1ª	Antioxidant
Watermelon	25 ± 6 ^b	107.2 ± 0.2^{b}	356 ± 1 ^b	507 ± 4 ^b	158 ± 1ª	compounds
Apple	32 ± 3 ^{ab}	61.4 ± 0.1°	1559 ± 20°	1767 ± 5°	902 ± 16 ^b	

COUNCO FINAL EVENT

B POLYPHENOLS from TOMATO SEEDS

COLUNCO FINAL EVENT

1st CONFERENCE ON GREEN CHEMISTRY & SUSTAINABLE COATINGS

OPTIMIZED EXTRACTS CHARACTERIZATION

24

LIPIDS from TOMATO SEEDS

FATTY ACIDS

1st CONFERENCE ON GREEN CHEMISTRY & SUSTAINABLE COATINGS

COTUNCO FINAL EVENT

TOCOPHEROLS CONTENT AND ANTIOXIDANT ACTIVITY

COLUNCO FINAL EVENT

ECOFUNCO PARTNERS

CONCLUSIONS

The development of innovative, fast and efficient methods based on MAE and UAE for the extraction of high value chemicals from agro-food residues is an interesting approach to obtain high added value compounds, such as polyphenols, lipids and cutin for biopolymers and coating applications.

Circular economy represents challenges and opportunities for companies and citizens to improve life quality

THANKS FOR YOUR ATTENTION

Universitat d'Alacant Universidad de Alicante

Contact: Prof. María del Carmen Garrigós University of Alicante mc.garrigos@ua.es

https://web.ua.es/en/nanobiopol/nanobiopolgroup-of-analysis-of-polymers-andnanomaterials.html

BIOPOL-2022 Alicante, 14th-16th November 2022

Agro-food Wastes as a Source of Antioxidants, Lipids and Cutin by Microwave-assisted and Ultrasound-assisted extraction

Ignacio Solaberrieta, Cristina Mellinas, Carlos Pelegrín, Marina Ramos, Alfonso Jiménez, <u>María Carmen Garrigós</u>

Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under grant agreement No 837863. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio Based Industries Consortium.

o-based Industries Consortium

